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New properties of hypergeometric series derivable from 
Feynman integrals: 11. A generalisation of the H function 

A A Inayat-Hussain 
Department of Physics, University of Western Australia, Nedlands, WA 6009, Australia 

Received 16 December 1986 

Abstract. Further examples of the use of Feynman integrals enable the derivation of new 
properties of hypergeometric series including new analytic continuation formulae for a 
generalised hypergeometric series and for a KampC de FCriet function. This motivates the 
derivation of two new summation formulae for a generalised hypergeometric series and 
furthermore leads to a natural generalisation of the H function. While the latter, as is well 
known, contains as particular cases most of the special functions of applied mathematics, 
it does not contain some of importance, for instance the Riemann zeta function nor indeed 
any polylogarithm. Our generalisation of the H function does contain the polylogarithm; 
it also contains the exact partition function of the Gaussian model from statistical mechanics. 
Another new result is the simple summation formula 

>F2[  1, 1,3/2; 2 , 2 ;  x ]  = -4x-' In{[ 1 + (1 - ~ ) " ~ ] / 2 } .  

1. Introduction 

In Inayat-Hussain (1987, hereafter referred to as I) we demonstrated the usefulness 
of Feynman integrals in enabling the derivation of new transformation, summation 
and reduction formulae for single and multiple variable hypergeometric series. 

Here we extend the work by obtaining two new analytic continuation formulae for 
hypergeometric series. The first of these leads to two new summation formulae and 
also points to a new generalisation of the H function. The latter, while continually 
finding applications in mathematics (see, e.g., Schneider 1986 and references therein), 
is however of limited use in the field of statistical mechanics. Our generalisation of 
the H function does have an interesting application in statistical mechanics, as discussed 
below. 

The new results given in this paper are obtained from evaluating in two ways certain 
Feynman integrals which arise in perturbation calculations of the equilibrium proper- 
ties of a magnetic model of phase transitions (Ma 1976, Inayat-Hussain and Bucking- 
ham 1986). For convenience, these integrals are listed in table 1, together with their 
convergence conditions. The notation used here is that given in § 2 of I. 

In this paper we first obtain, by the use of the integral g, a new analytic continuation 
formula (with z +  l / z )  for a J - ] ( z )  from the domain IzI < 1 to the domain with 
Jarg zI < T. A special case of this formula is a new analytic continuation formula (2) 
for Gauss' hypergeometric function. In § 2.2 the integral h is used to deduce, for a 
KampC de Firiet function, an analytic continuation formula from the domain IzI < 1 
to the domain larg( 1 - z)l < .ir, with z - ,  z / ( z  - 1). 

Section 3 contains the derivations of summation formulae for certain single variable 
hypergeometric functions. 

0305-4470/87/ 134119+ 10$02.50 @ 1987 IOP Publishing Ltd 41 19 
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Table 1. Some integrals and their convergence conditions. These integrals, with the 
exception of h, are over d-dimensional space with p , ( i  = 1,. . . , d )  the components of the 
vector p .  The region R is the half-space in which p 1 2 0 ;  1 is an arbitrary unit vector 
with components 1 , (  i = 1, . . . , d ) .  

where a < d +  u < a + p  and v >  - 1  

f = f ( a , P ,  v, d ) = ( 2 ~ ) - ~  dplpl-"lp. ll"lp+ll-' 

where a < d + u < a + p ,  u >  -1 and p < d. 

g =  g(7, 7, p, m ;  2) = ( 2 . ~ ) - ~  1 
where larg z1< P , O <  1) < y. p >max{2y-2, -l}, p = d - 2  and m =0,  

f 
dplp12"-d(lnlpl)"lpz'/2f 

I 

1,2 ,3  ,.... 

where O <  U <  d < 2 u  and r 2 0. 

h = h ( p ;  p )  = 

where largplc  ~ a n d - f < p < l .  

d x x Z W - ' ( x 2 + p ) - l  tan-' x f : 
Section 4 contains the generalisation of the H function. This emerged from attempts 

to express in terms of the H function, both the integral g for non-integer m and the 
free energy of the Gaussian model (see, e.g., Joyce 1972) in arbitrary dimensions. 

Finally, in § 5 ,  we summarise and briefly discuss the results together with those of I. 

2. Analytic continuation formulae 

2.1. A generalised hypergeometric function 

The integral g (see table 1) permits the derivation of a new analytic continuation 
formula (with z going to l / z )  for a generalised hypergeometric function from the 
domain IzI < 1 to the domain larg zI < r. The analysis below shows that 

( - i )mT1+"r ( i+p /2 ) r (1+p /2 -  y )  

a" Z - ? r ( m y -  

+ 
+ " y )  

(1) 

where 0 < 7 < y and p > max(2y - 2, -1). 
A special case of (l),  obtained by setting p = y -  1 and m = 0, is a new linear 

transformation formula for a 2Fl (for an extensive list of the linear transformation 
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where O <  77 < y <  1 ,  (arg z J  < T. 
For z = 1,  (2) reduces to an identity between two 2Fl(1). This identity is not new; 

it can be shown to be a consequence of Gauss' summation formula (Slater 1966, 
equation (111.3)). Further these 2Fl(l)  can be combined to yield a 4F3(l) ,  but the 
resulting summation formula is again not new; this time it is a special case of a well 
known summation formula for a 5F4(1) (Slater 1966, equation (111.12)) in which a 
cancellation takes place between one numerator and one denominator parameter 
resulting in the 4F3( 1 ) .  The special case of the more general identity (1) obtained by 
setting z = 1 does, however, turn out to have a non-trivial consequence in that it 
motivates the derivation of new summation formulae for the generalised hypergeometric 
function with arguments 1 or -1 ,  an aspect to be developed in § 3. 

The proof of ( 1 )  is based on evaluating the integral g in two different ways: 

- -X , , [ :d8 [omdpG(p ,8 ) - r  27r Kd-l dp 1: d e  G (  p ,  8) (4) 

where 

G (  p ,  8) = p2n-1(ln p)"(sin e)"( 1 + 2z'"p cos 8 + ~ p * ) - ~  

and the factor 

Kd = 2'-d7r-d/2/r(d/2) ( 5 )  

is the ratio of the surface area of a unit sphere in d dimensions to ( 2 7 ~ ) ~ .  In (4) g has 
been written as the integral over all space less the integral outside the unit sphere and 
the order in which the integrals over p and 6 have been written indicates the way in 
which these integrals can be readily evaluated. 

Standard integrals (Gradshteyn and Ryzhik 1980, § 3.665, equation (2) and § 4.272, 
equation (6)) can be used in (3) to yield the left-hand side of ( l ) ,  to within a few 
factors of the gamma function. 

To evaluate the integral over all space on the right of (4), we first write 

pzV-l(ln p ) "  as ( a /  a (2 rl 1 ) - 

and by a suitable change of variable extract from the integral the dependence on z 
(which is of the form z-'). The resulting double integral can now be evaluated 
(Gradshteyn and Ryzhik 1980, § 3.252, equation (10) and 0 7.166) in the given order 
to yield the derivative term on the right of ( 1 ) .  The evaluation of the other double 
integral on the right of (4) is similar to that of the double integral in (3); this yields 
the hypergeometric function on the right of ( l ) ,  thus completing the proof. 
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2.2. A Kampe' de Fe'riet function 

There are various analytic continuation formulae known for the hypergeometric 
function and the Appell functions (Slater 1966, ch 8). However, little is known about 
such formulae for the Kampi de FCriet function, with the exception of those special 
cases which reduce to lower 'order' hypergeometric functions (see, e.g., Exton 1976, 
0 1.5, 0 4.7.1, 1978, 0 1.3.2, Buschman and Srivastava 1982, Karlsson 1984). (The term 
'order', as used here, refers to a classification in terms of the number of variables or 
the number (and types) of Pochhammer symbols involving the parameters. The 
classification by order has been shown to break down (see Carlson 1976) and remains 
an incompletely resolved problem in the theory of hypergeometric functions (see 
Srivastava and Karlsson 1985, ch 9).) 

A new result on the analytic continuation of the KampC de FCriet function is the 
following: 

F2: 1 ; l  1 *,I 1 11 1 
2: o ; o [ 2 : w , 2 ;  -;-; ; z ' (2 -1 ) -  1 1  F2: I ;  1 [ 11, 1' ' 11, ; I ; z+ P 2  

(1-z)(1-P)2 2: 0; 0 l+*, 2. -; -; 

where larg( 1 - z ) l <  ?r and -1/2 < p < 1. The proof of this formula is based on evaluat- 
ing in two ways a remarkably simple integral, namely h in table 1. After writing tan-' 
x, which appears in the integrand, as an inverse Mellin integral (Marichev 1983), an 
interchange of the order of integration of the resulting double integral followed by the 
evaluation of the x integral yields 

where -1 < c < O .  For IPI'1, (7) can be evaluated by summing the residues at the 
simple poles (s = 0, s = 1 +2n, s = 2 p  +2n, n = 0, 1,2, . . .) in the right half of the com- 
plex s plane, whereas for IpI < 1 the contour of integration is closed around the poles 
( s = - 1 - 2 n , s = 2 ( p - l - n ) , n = 0 , 1 , 2 ,  ...) in the left half of the complex s plane. 
The contribution from the semi-circular part of the closed contour which arises in both 
cases can be shown to vanish in the limit as its radius approaches infinity. These steps 
give, for IpI > 1, 

1/2-11 \ 

and for 1/31 < 1, 

( 9 )  

The hypergeometric functions in (8) and (9) are of the form ,Fl[a, 6 ;  a + 6 ;  z] and 
we can exploit some known results (Abramowitz and Stegun 1972, equations (15.1.4) 
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and (15.3.10)) to extend their domains of analyticity. Thus we obtain, with +(z)  the 
digamma function, 

7~ In( 1 + P - " ~ )  
sin( 7 ~ p )  2p1-@ cos( 7 ~ p )  

2 
7T + h ( P ;  P )  =4pl-p 

valid for larg( 1 - p - ' ) /  < 7~ and 11 - p-'l< 1 and 

valid for larg( 1 - p)I < 7~ and 11 - p /  < 1. The domains of analyticity of (10) and (1 1) 
clearly overlap. Inserting the series representation for the digamma functions (Grad- 
shteyn and Ryzhik 1980, P 8.363, equation (3)) and making use of the definition of the 
KampC de FCriet function (see I, equation (3)), equating (10) and (11) finally leads 
to the result (6), where z is to be identified with 1 - p - ' .  

A similar calculation for the integral 

h l ( p ;  p ) =  [omdxxP-1(x+/?)-21n(l+x) 

with -1 < p < 2, yields the further result 

z / ( z - 1 ) ,  I ]  
F2: 0; O [ 3 I p ,  2: -; -; (2-P)(1-z)2 

F2: 1; 1 [ p, 1. ' p ,  : 1 ; z , q =  -P 2: 1; 1 2 p, 1: 2-p ;  1 
2: 0; 0 l + p ,  2. -; -; 

(12) 
7~ cot(.rrp)+ln(l-z) 

(1-Z)W 
+y( l +  

1 - P  (1-PHl-Z)  

where larg( 1 - z)l < 7~ and, as before, z = 1 - p- ' .  This formula is related to (6); in fact 
it can be derived directly by applying the 'contiguous relation' (Abramowitz and Stegun 
1972, ch 15) 

p2F1[192-PL; 3 - P ;  P ] = ~ F I [ ~ , ~ - P ~ L ;  2 -P ;  PI -1  

to (9) and repeating the steps which led to (6). 

3. Summation formulae for generalised hypergeometric series 

Consider the following summation formula obtainable from (1) by setting z = 1 and, 
for the moment, m = 0: 

This formula is not new but is a special case of a well known summation formula for 
a well poised J4( 1) (see Slater 1966, equation (111.12)). A generalised hypergeometric 
function I+pFp is said to be well poised (Whipple 1926) when its parameters 
ao, a l , .  . . , up and bo, 61,.  . . , bp or appropriate permutations are such that 1 +ao  = 
a, + 6 ,  = . . . = ap + 4. 
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However, a new result does arise in the special case obtained from (1) by setting 
m = 1 (with z = 1). This yields, for a well poised 7F6(l)  with certain denominator 
parameters greater by unity than the numerator parameters, the formula 

I 1  7 F6C y i 2 ,  I + p / 2 .  I + %  l + %  I + y - v ,  l + y - T ;  
Y. l+Y/2 ,  v - r / 2 . 7 ,  ?, v - v ,  Y - R ;  

= -  v 2 ( y  - d 2 r ( d r ( y  - mi + d 2 ) r ( i  + ~ / 2  - Y) 
(Y - 2 m 1 +  Y ) W +  p / 2  + 7) - mi + , 4 2  - 7) 

x [rL(77)+ rL(1 + P / 2 -  7 7 ) - $ ( Y - T ) -  $(I +IL/2+ 77 -?)I. (14) 
Karlsson (1971, 1974) has shown that generalised hypergeometric series with integral 
differences between certain numerator and denominator parameters (and provided the 
parameters are distinct) can be written in terms of finite sums over lower-order functions 
(generalisations to non-integral differences can be found in Chakrabarty (1974) and 
Panda (1976)). Unfortunately the usefulness of his results (and also those of Chak- 
rabarty and Panda) is limited by the fact that they do not preserve the symmetry 
properties (for example, the property of being well poised) of the hypergeometric 
functions. To give an example, application of equation (5) of Karlsson (1974) to the 
5F4( 1) in (13) would yield the following reduction: 

Y,  l + Y / 2 ,  Y - p / 2 . ? *  v - 7 ;  
SF4[y/2, 1 + p / 2 ,  I + ? ,  l + y - r ) ;  '1 

(15) 
The two 4 F 3 (  1) in (15) cannot be summed by any of the known summation formulae 
whereas the 5F4( l ) ,  as demonstrated by (13), is in fact summable. Thus, in this example, 
the use of equation ( 5 )  of Karlsson (1974) would only obscure the simplicity of the 
problem. Furthermore Karlsson's formula cannot be applied directly (that is, without 
getting involved with derivatives with respect to parameters) to the 7F6(l)  in (14), as 
some of its parameters, namely those having counterparts differing by integer values, 
h,ave the same value. 

A direct proof of (14) would take advantage of the well poised structure of the 
7F6(1). This has been achieved and further generalised in the form of the following 
new summation formulae for certain well poised hypergeometric functions of argument 
1 or -1: 

3 + 2 m ~ 2 +  2 m [ ~ / 2 ,  y + a .  I 1  
Y . ~ + Y / ~ , ~ - ~ , ~ ~ . Y - ~ , ,  . . . , ~ " , .  Y - ? , ;  

l + v - - ? , ,  ..., I+?,, l+y-?,,,; 

- - ( - W + m W d r ( y +  a )  n7-1 [ q j ( ~ - ~ j ) I  

ru + y )  

(16) 
T(Y- Tj)r(t7j)  x f  

j =  1 ( a + T j ) r (  7 + a - T j )  n k"= I , k # j  ( y - T j  - v k  )( T j  - r ] k )  

provided a > 1 - m, a f 0, -1, -2, -3, . . . , and y - vj and 77j are not negative integers 
for any j ;  

2 + 2 m F l + Z m [ y / 2 .  i + v - 7 1 ,  ..., I+?,, -11 Y. l + Y / 2 ,  Y - V l  ...., ?,. y - 7 , ;  

provided y < 2m and y - vj and vj are not negative integers for any j .  

some detail the proof of (16) we only indicate that of (17). 
The proofs of (16) and (17) are based on induction on m and while we give in 
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Let @ ( m )  denote the left-hand side of (16). For m =0, (16) is valid by Dixon's 
theorem (Slater 1966). Suppose now that (16) is valid for m - 1. By introducing the 
series representation (1) of I and making use of the partial fraction expansion 

1 

). (19) 
U Y -  7,)U7,) - f  

J = 1  J Z m - 1  r(a + 7j)r( + a - 7,) nr= 1 , k Z j  (7 - 7, - T k ) (  7, - T k )  

Each of the sums appearing on the right-hand side of (19) can be split to yield a sum 
running over j from 1 to m - 2 together with a single term. The resulting expressions 
are then combined in a way which effectively reverses the partial fraction expansion 
(18) to yield the right-hand side of (16). Appeal to the principle of induction completes 
the proof. 

The proof of (17) is also based on the same partial fraction expansion (18). The 
formula for m = 0 is true by Kummer's theorem (Slater 1966) and the result for general 
m is deduced in the same manner as above. 

4. A generalisation of the H function 

In this section we discuss certain functions which are not themselves members of the 
class of functions included in the H function but which naturally suggest a certain 
generalisation (26) of that function. 

Consider the function 

g1= (-l)"g(Y, 7, CL, m ;  z )  = (2.rr)rd d ~ l p 1 2 ~ - d [ l ~ ( l / l ~ o l m l l + ~ 1 ' 2 p l - 2 y  
IP/=L 

where g is the integral dealt with in 9 2.1. This function is real valued, even for 
non-integer values of m, if z is real. 

By using the same method as in 9 2, it is easy to show that 

(20) 
Kd-,m!B(1/2, 1 / 2 + ~ / 2 )  f (Y)n(Y-CL/2)nZn 

22+mlr n=o(l+CL/2),(T]+n)'+"n! g1 = 
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where Kd has been defined in ( 5 ) .  The series in (20), which for integer values of m 
represents a generalised hypergeometric function, can be written as a Mellin integral 
so that 

g, = 2 2 + m T m w ( Y  - p / a  I -  -im 2 ~ i  (7 + ~ ) l + ~ r (  1 + p / 2 +  S )  

For non-integer values of m, this Mellin integral is clearly not a H function. The latter 
is defined by 

K d W l m  ! r ( i  + p / 2 ) ~ ( 1 / 2 , 1 / 2 + p / 2 )  ds ( -~)"r(-s)r(~+ s)r(? - p / 2 + ~ )  

The conditions for absolute convergence of the integral in (21) are discussed in 
Srivastava et a1 (1982). 

In equilibrium statistical mechanics a simple model of phase transitions is the 
Gaussian model (Joyce 1972) which furnishes yet another example of a function which 
is not a H function. The free energy of this model on a Bravais lattice in d dimensions 
is given by 

- p ~ ( d ; p ,  [ ) = + l n [ - + ( 2 ~ ) - ~  Io2T.. . dk ln([-;p.?(k)) 

where j ( k )  is the Fourier transform of the interaction energy, p is the inverse tem- 
perature and [( [ > 0) is an 'intensive' thermodynamic variable. For a body-centred 
cubic lattice with only nearest-neighbour interactions (Smith 1983, appendix 2) 

d 
j ( k )  = J n cos ki ( J > O )  

i = l  

and the free energy reduces to 
d 

p F ( d ;  E )  = 4 ( 2 ~ ) - ~  lo2'. . . dk In( 1 - ( 1  + E ) - '  n cos ki 
i = l  

The variable E = pc/p  - 1 is a reduced temperature interval, where pc = 2[/J is the 
critical temperature. 

By expanding out the logarithm in (22), the free energy can be expressed in terms 
of a series: 

For integer values of d, this gives a generalised hypergeometric function: 

P F ( d ;  E )  = -2-2-d ( 1  + & ) - ' 2 + d F l + d [  1,  1,3/2, . ,3 /2;  2, . . , , 2; ( 1  + &)-']e (24) 
There is interest in (23) even for non-integer values of d, when the free energy is 

no longer a generalised hypergeometric function and is not even expressible as an H 
function; this is evident from the Mellin integral representation: 

[ - ( i + ~ ) - ~ ] ~ r ( - ~ ) [ r ( i + ~ ) ] ~ [ r ( 3 / 2 + ~ ) ] ~  
[ r ( 2 + ~ ) ] I + ~  

P F ( d ;  E ) = -  

In one dimension, the integral (22) can be evaluated directly by means of the 

(25) 

residue theorem to yield 

P F (  1 ;  E )  = -4 ln 2+4 In{l+ [ 1 - ( 1  + E ) - ~ ] " ~ } .  
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Equating (25) and (24) (with d = l ) ,  and defining x = ( 1  + E ) - ~ ,  gives the new summation 
formula for a 3F2, as mentioned in the abstract: 

,F2[1, 1,3/2; 2,2; x] =4x-'(ln 2-ln[1+(1 -x)'"]). 

This formula has also been derived independently by Gottschalk (1986) in the course 
of studying solutions of the Schrodinger equation describing multielectron atoms. 

A further example of a function which is not a special case of the H function is 
the polylogarithm of complex order v (see, e.g., Marichev 1983). 

The three examples discussed above all suggest the following generalisation of the 
H function which we denote by the symbol fi: 

1 fi;q"[zl(ul, A l , a , )  , . . . .  ( ~ ~ . A ~ , a ~ ) , ( u l + , , . A 1 + , , )  ,..., ( u p . A p )  
(PI .  B i ) , . . . , ( P , . B , ) , ( P l + m .  B ~ + " , . b l + " ~ ) . . . . , ( P q ,  B q , b q )  

(26) 

Comparison with (21) shows by inspection that only when aj and bj all take integer 
values does fi reduce to the H function. A particularly important case of the fi 
function corresponds to that of the generalised hypergeometric function in the case 
of the H function, namely 

- i3c ds 
- j _ i , n l n ~ = l + ~ [ T ( l - p j + B j s ) ] b ~  II ,P, ,+,T(aj-Ajs) '  

z s  n,E1 r(p, - B,s) n:=, [ r ( l -  a j + A j s ) ] " ~  

1 

n;=, [ u p ,  + S) I 'J  

H" P (1-u1* I ,  R I )  ,.... ( l - a p ,  1 , a J  
p .  l+q[-zI (0, l ) , ( l - P ~ ,  1 , b I )  ,..., ( 1 - P q ,  1, b,) 

im ds ( - Z ) ' r ( - s )  np,, [ r (a ,+~)]a j  

The three functions described above in this section, which in general are not special 
cases of the H function, are nevertheless covered by (27) and are therefore cases of 
the fi function (26). In particular the Gaussian model free energy is given by 

5. Conclusion 

Certain Feynman integrals have been shown to be a rich source of new results for 
hypergeometric functions of one or more variables. We have also illustrated by the 
use of examples, in particular from statistical mechanics, the inadequacy of the class 
of functions described by the H function and put forward a natural generalisation to 
the 

The d-dimensional integrals dealt with in both parts of the present work all have 
integrands which are rotationslly invariant at least about one axis, thus enabling the 
use of the spherical coordinate transformation. The reader will by now have realised 
that we have not made use of the integral 7~ (see table l ) ,  which has only a discrete 
symmetry. This very property, although undesirable from the viewpoint of ease of 
analysis, enables the integral to be a source of new results for the Wright function and 

function (26) but have not yet fully explored its analytic properties. 
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the generalised Lauricella series of n variables. In the special case of two variables, 
we have obtained the new summation formula 

- 4 8 - d )  sin[r(d/4-1/4)] ~ i n [ r ( d / 4 - 1 ) ] - 4 4 ~ / ~ - '  

valid for 4 < d < 8. The proof of this result, the details of the more general cases and 
their relevance to the description of an anisotropic Lifshitz critical point will be 
presented elsewhere. 

- 
23'2(5-d) s in[ r (d /4-  l)]  ('+ cos[r(d/4-  l ) ]  
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